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LETTER TO THE EDITOR 

Separation of variables in the nonlinear wave equation 

R Z Zhdanov 
Institute of Mathematics, Ukrainian Academy of Science. Tereshcherkivska Streef 3, Kiev-4, 
Ukraine 

Received 6 January 1994 

Abstract. We develop a technique making it possible to handle the problem of separation 
of variables in nonlinear differential equations. Using it we obtain a number of new two- 
dimensional nonlinear wave equations admimng separation of variables and conshuct their exact 
solutions. 

It is generally recognized that the method of separation of variables (SV) is one of the most 
universal and powerful means for study of linear partial differential equations (PDE). But 
the key idea of the method-the idea of reduction of PDE under study to several ordinary 
differential equations (ODE) can be applied to nonlinear equations as well. The classical 
example is the Hamilton-Jacobi equation [1,6,7]. Another example is provided by the 
nonlinear wave equation 

nu = uxoa - UXIZt = F ( u )  (1) 

which admits SV under F(u) = hsinu [SI and under F(u)  = hu Inu [5 ] .  
In [3,9] we suggested a new approach to the problem of separation of variables making 

it possible to study both linear and nonlinear equations. And what is more, the said method 
permits us to solve a classification problem, i.e. to describe PDE belonging to a given class 
which admits SV. 

It is known that equation (1) separates into two second-order ODE iff F ( u )  = (A, + 
h2u) In U, hi E RI [5 ] .  What is more, Sv is possible in Cartesian coordinates x g ,  XI only. 
Applying the technique developed in [3,9] one can establish that the same result holds when 
separating PDE (1) into the first- and the second-order ODE. 

In the present paper we study the case when nonlinear wave equation (1) admits 
separation into two first-order ODE. We obtain a number of new nonlinearities F(u) 
permitting sv in (I), F ( u )  = hsinu, F(u) = hu Inu being particular cases of the obtained 
formulae. 

Consider the following first-order ODE: 

.&(oi) = Ri(&(oi))  i = 1.2 (2) 

where R I ,  Rz are some smooth functions, and the overdot denotes differentiation with 
respect to the corresponding argument. 
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Definition. Ansatz 

4 2 )  = f(x,A(wl(x)),&z(y(x))) (3) 

determines a solution of PDE (1) with separated variables in coordinates o ~ ( x ) , w z ( x )  if 
substitution of (3) into (1) with subsequent exclusion of the derivatives Jj, 4; according to 
formulae (2) yields an identity with respect to the variables 41, 4. 

Let us note that standard approach to sv implies that the solution with separated variables 
is looked for either in the form U ( X )  = u(x )&(o l )4 (@)  (multiplicative sv) or in the form 
u ( x )  = U ( X )  + & ( w I )  + &(wz) (additive SV) [6]. The principal idea of our approach is 
that the form of the ansatz for u(x)  should not be fixed a priori. The choice of functions 
f ,  01, y must be determined by the form of the nonlinearity F(u) .  

In the following, we study the case when in (2). (3) W I  = x o , y  = XI, f = 
g(&(xo) + & ( X I ) )  i.e. the solution of equation (1) is searched for in the form 

U(x) = g(@l(xO) + &(XI)) 2 # 0. (4) 

Substituting (4) into (1) and excluding &, &, i = 1,2 according to formulae (2) we get 

(5) g(R1R1 - Rz&) + g(R; - Rz) = F(g) .  

After redenoting Qj = ;I?,?, i = 1,2 we rewrite (5) in the following way: 

~ ( Q I  - Qd + 2g(Q1 - Qd = F(g($i + 4~~2)).  (6) 

Now, we have to split equality (6) with respect to independent variables # I ,  &. For 
this we act on (6) by the operator a/abl -a/&&, whence 

as1 + Qz) + 2XQl+ rid = 0. 

Ql(41) = -Qz(@~) = A A = COn.9 (8 )  

(7) 

Consider the lint case Q1 + QZ = 0. Then the equality 

holds. 
Integration of ODE (8) gives 

QI = @I + CI QZ = -A& + Cz Cr. Cz C RI. 

If one substitutes the result obtained into reduced ODE (2) and integrates these, then one 
obtains the following equalities: 

&I + @z = W X O  + t I Y  - (XI + t2)2) 

@I +& = t l X 0  + t z x l  +c,. 

(9) 

01 

(10) 

It means that under Q,+ fiz = 0 the above described procedure yields group-invariant 
solutions of PDE (1) which have been studied in detail (see, e.g. [2]) and are not considered 
in the following. 
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Suppose now that inequality Q 1 +  dz # 0 holds. Then (7) can be rewritten in equivalent 
form 

-2s’ Q l + Q 2  
f Q l + Q 2 ’  
_-  - 

Acting on the above relation by the operator - a/a& we get 

( Q l  - & ) t Q l +  Q 2 )  - Q: + Q; = 0. 

QYv)Q2 - QIQYv) = 0, 

(11) 

Next, differentiating (1 1) with respect to $1  and $2, we arrive at the equality 

(12) 

The case 1. Q 2  # 0. Then from (12) it follows that 

Q Y ) / Q l  = QFv’/Q2 = A = const. (13) 

Integration of ODE (13) yields 

QI = AQI  + Bi$i + yi 

Q* = AQz + B z h  + YZ 

where pi, yi are arbitrary constants. 
Further, one has to consider the subcases A < 0, A = 0, A > 0 separately. 

The subcase 1.1. A = -az < 0. Then the general solution of ODE (13) is given by the 
formulae 

Qi = Ci cosa$i + Di sin a& + A& + Bi (14) 

where Ci, Di, Ai, Bi, i = 1,2  are arbitrary constants. 

C: + 0: - C: - D: + ( A I  + Az)(CI sina$i - DI C O S ~ $ I  - Czs inah  + D ~ c o s a h )  = 0. 

(15) 

If in (14) Ci = 0, Di = 0, then integration of the corresponding ODE (2) gives formulae 

Substituting (14) into (11) we have 

(9), (IO). Otherwise, (15) is equivalent to the following equalities: 

C : + D ; = C ; + D ;  A i = - A z = A  

whence 

Q I  = CCOS(U$I +ai) + A h  + BI 

Q2 = C C O S ( O ~ ~ ~  + ~ 2 )  - A& + Bz. (16) 

On making transformation 4; -+ @; - aia-I one can choose in (16) a1 = a2 = 0, i.e. 

Q I  = CCOSCU~I  + A41 + BI 

Q Z = C C O S + - A ~ +  8 2 .  (17) 
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Substituting (17) into (7) we get an equation for 8 = $(#I + &) 

01 01 01 
2@)-1 = --(coscudl+ costuh)(sincudl+ sinadz)-' = --cotan (T(dl+ dz)). 

2 2 

General solution of the above equation reads 

01 
8 = 41 Intan -($I + M +  qz 4 

where ql , qz are arbitrary constants. 
Without loosing generality we can choose q1 = 1, q2 = 0 i.e. 

01 
8 = In tan -(@I + &). 4 

After rescaling variables 61, h we get (Y = 4. Substitution of g = Intan(61 t &) into 
(6) gives an explicit form of the function F ( g )  

F ( g )  = rlA(cosh8 - (Sinhzg) tan-' ep) + 4(B1 - Bz) Sinhzg. 

Thus, we have established that the ansatz 

N.4 = InWdl(xd +~z(xI)) 

reduces nonlinear wave equation 

Ou = 2A(cosh U + (sinh 2u) tan-' e") + 2(B1 - B2) sinh 2u 

to tWO fiSt-Order ODE 

4; = C C O S ~ ~ I  + Ad1 + BI 

6; = CCOSN - A&+ B ~ .  

The remaining cases are studied in a similar way. That is why we adduce only final 
results-ansatzes for u ( x )  corresponding nonlinear PDE (1) and reduced equations. 

The subcase 1.2. A = 0. 

= ln(dI(xO) + &(XI)) 

Ou = Ae" + 2(D2 - Dt)e-" 

4; = 2Ad: + Ed; + Cdi + Di 

4; = -2A@ 4 
where A, B.  C. DI, Dz are arbitrary constants. 

- C& + Dz 



Letter to the Editor I295 

The subcase 1.3. A = az > 0. 

Here, A, Bi, C, C, are arbitrary constants. 
The case 2. QI = 0, QZ # 0. This case leads to formulae (18) with Cl = 0. 
The case 3. QI # 0. Q, = 0. This case leads to formulae (18) with C, = 0. 
The case 4. 91 = Q 2  = 0. This case yields for 41 + @z expression of the form (9) or 

We say that equation (1) admits non-trivial SV if expression $I(X~)  +&(XI) cannot be 

Theorem. PDE ( I )  admits non-hivial SV in the class of functions (1) iff it is locally 

(10). 

represented in the form (9) or (IO). So we have proved the assertion. 

equivalent to one of the following nonlinear wave equations: 

(1) Ou = Al(cosh U + (sinh 2u) tan-' e") -t A2 sinh 2u 

(2) Ou = Ale" + Aze-" 

(3) Ou = AI (sinh U - (sinh2u) arctanh e") + A2 sinh 2u 

(1% 

(20) 

(21) 

(22) 

(23) 

(4) nu = AI (2 sin u + (sin 2u) in tan K )  + AZ sin 2u 
2 

(5) Ou = Aju + AZU In U 

where AI ,  A2 are arbitrary constants. 
Note. It is well known that the nonlinear wave equation (1) admits Lie-Backlund 

operators, whose coefficients do not depend on x o , x l ,  iff F ( u )  = Asinu or F(u)  = 
AleU + h ~ e - ~ "  141. Evidently, equations (1) with such F(u)  are particular cases of PDE 
(20). (22). 
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In conclusion, we adduce exact solutions of nonlinear PDE (19H23) obtained by 
integration of the corresponding reduced ODE: 

(1) U ( X )  = I n t d h ( x o )   XI)) 

where C ,  A ,  B I ,  B2 are arbitrary constants satisfying relations A = A1/2, B I  - BZ = A2/2; 

(2) u(x )  = W l ( x o )  +MxI)) 

where CI, CZ. A ,  B I ,  8 2  are arbitrary constants satisfying relations A = A I ,  BI - Bz = 
A2 - Ai. 
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If we choose in (24) A = 0, we get a solution of the sineGordon equation obtained in 

Thus, we have obtained a number of new nonlinear wave equations of the form (If 
admitting sv and constructed their exact solutions. 

It should be noted that the above solutions cannot be conshucted by using Lie symmetry 
of equations (19H23). We guess that a possible way for obtaining such solutions is to utilize 
conditional symmetry of the nonlinear wave equation (1) [2] but this is a topic of a future 
paper. 

[SI. 
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